1. The inflation rate of the U.S. dollar is 3 percent. This means that every year prices increase by 3 percent. If a sandwich cost $\$ 4.45$ five years ago, what does it cost now? Use the formula $P=A$ 鸟 where P is the amount an item costs today, A is the amount the item originally cost, r is the interest rate as a decimal, and t is the time in years.
[A] \$3.82
[B] \$5.16
[C] \$21.58
[D] \$4.58
2. The inflation rate of the U.S. dollar is 3.7 percent. This means that every year prices increase by 3.7 percent. If a paperback book cost $\$ 5.25$ nine years ago, what does it cost now? Use the formula $P=A$ - r where P is the amount an item costs today, A is the amount the item originally cost, r is the interest rate as a decimal, and t is the time in years.
[A] \$5.44
[B] \$45.50
[C] \$7.28
[D] \$3.74
3. The inflation rate of the U.S. dollar is 3.8 percent. This means that every year prices increase by 3.8 percent. If a pound of vegetables cost $\$ 1.75$ three years ago, what does it cost now? Use the formula $P=A$ D r where P is the amount an item costs today, A is the amount the item originally cost, r is the interest rate as a decimal, and t is the time in years.
[A] $\$ 5.05$
[B] \$1.82
[C] \$1.96
[D] \$1.56
4. The inflation rate of the U.S. dollar is 3.5 percent. This means that every year prices increase by 3.5 percent. If a sandwich cost $\$ 4.55$ six years ago, what does it cost now? Use the formula $P=A$ - r where P is the amount an item costs today, A is the amount the item originally cost, r is the interest rate as a decimal, and t is the time in years.
[A] \$26.34
[B] \$4.71
[C] \$3.67
[D] \$5.59
5. The inflation rate of the U.S. dollar is 2.8 percent. This means that every year prices increase by 2.8 percent. If a quart of oil cost $\$ 1.15$ eight years ago, what does it cost now? Use the formula $P=A$ - $r \mathbf{Q}$ where P is the amount an item costs today, A is the amount the item originally cost, r is the interest rate as a decimal, and t is the time in years.
[A] \$1.18
[B] $\$ 1.43$
[C] \$0.92
[D] \$8.94
6. The inflation rate of the U.S. dollar is 3.3 percent. This means that every year prices increase by 3.3 percent. If a stuffed animal cost $\$ 14.05$ seven years ago, what does it cost now? Use the formula $P=A$ - r where P is the amount an item costs today, A is the amount the item originally cost, r is the interest rate as a decimal, and t is the time in years.
[A] \$17.64
[B] \$11.11
[C] \$95.10
[D] \$14.51
7. The inflation rate of the U.S. dollar is 3.6 percent. This means that every year prices increase by 3.6 percent. If a CD cost $\$ 13.75$ two years ago, what does it cost now? Use the formula $P=A$ - r where P is the amount an item costs today, A is the amount the item originally cost, r is the interest rate as a decimal, and t is the time in years.
[A] \$12.78
[B] \$14.76
[C] \$26.51
[D] $\$ 14.25$
8. The inflation rate of the U.S. dollar is 3 percent. This means that every year prices increase by 3 percent. If a pound of meat cost $\$ 0.95$ five years ago, what does it cost now? Use the formula $P=A$ - r where P is the amount an item costs today, A is the amount the item originally cost, r is the interest rate as a decimal, and t is the time in years.
[A] \$4.61
[B] \$1.10
[C] \$0.82
[D] \$0.98
9. The inflation rate of the U.S. dollar is 2.9 percent. This means that every year prices increase by 2.9 percent. If a paperback book cost $\$ 4.45$ four years ago, what does it cost now? Use the formula $P=A$ - r where P is the amount an item costs today, A is the amount the item originally cost, r is the interest rate as a decimal, and t is the time in years.
[A] $\$ 4.99$
[B] \$17.28
[C] \$4.58
[D] \$3.96
10. The inflation rate of the U.S. dollar is 3.1 percent. This means that every year prices increase by 3.1 percent. If a pound of meat cost $\$ 1.65$ six years ago, what does it cost now? Use the formula $P=A$ - $r_{\text {wher }} P$ is the amount an item costs today, A is the amount the item originally cost, r is the interest rate as a decimal, and t is the time in years.
[A] \$1.70
[B] \$1.37
[C] \$1.98
[D] $\$ 9.59$
11. If $\$ 1110$ is invested in an account which earns 10% interest compounded annually, what will be the balance of the account at the end of 14 years? Use the formula $P=A$ d $r \mathbf{Q}$ where P is the account balance, A is the amount originally invested, r is the interest rate as a decimal, and t is the time invested in years.
[A] \$1114
[B] \$18,186,240
[C] \$4215
[D] $\$ 2664$
12. If $\$ 610$ is invested in an account which earns 7% interest compounded annually, what will be the balance of the account at the end of 6 years? Use the formula $P=A$ 回 r where P is the account balance, A is the amount originally invested, r is the interest rate as a decimal, and t is the time invested in years.
[A] \$3916
[B] \$14,724
[C] \$915
[D] \$866
13. If $\$ 710$ is invested in an account which earns 5% interest compounded annually, what will be the balance of the account at the end of 8 years? Use the formula $P=A \mathfrak{D}_{-} \mathbf{Q}$ where P is the account balance, A is the amount originally invested, r is the interest rate as a decimal, and t is the time invested in years.
[A] \$1049
[B] \$5964
[C] \$994
[D] \$18,197
14. If $\$ 700$ is invested in an account which earns 9% interest compounded annually, what will be the balance of the account at the end of 11 years? Use the formula $P=A$ - ${ }_{r} \mathbf{Q}$ where P is the account balance, A is the amount originally invested, r is the interest rate as a decimal, and t is the time invested in years.
[A] \$815,432
[B] \$1806
[C] \$1393
[D] \$703
15. If $\$ 1210$ is invested in an account which earns 6% interest compounded annually, what will be the balance of the account at the end of 4 years? Use the formula $P=A$ D $r \mathbf{Q}$ where P is the account balance, A is the amount originally invested, r is the interest rate as a decimal, and t is the time invested in years.
[A] \$7930
[B] \$1528
[C] \$5130
[D] $\$ 1500$
16. If $\$ 980$ is invested in an account which earns 8% interest compounded annually, what will be the balance of the account at the end of 16 years? Use the formula $P=A$ - r where P is the account balance, A is the amount originally invested, r is the interest rate as a decimal, and t is the time invested in years.
[A] \$2234
[B] \$11,901,074
[C] \$983
[D] \$3357
17. If $\$ 1360$ is invested in an account which earns 4% interest compounded annually, what will be the balance of the account at the end of 5 years? Use the formula $P=A$ D $r \mathbf{Q}$ where P is the account balance, A is the amount originally invested, r is the interest rate as a decimal, and t is the time invested in years.
[A] \$1361
[B] \$1655
[C] \$7314
[D] $\$ 1632$
18. If $\$ 940$ is invested in an account which earns 8% interest compounded annually, what will be the balance of the account at the end of 9 years? Use the formula $P=A \mathbf{D}_{-} \mathbf{Q}$ where P is the account balance, A is the amount originally invested, r is the interest rate as a decimal, and t is the time invested in years.
[A] \$186,458
[B] \$9137
[C] \$1879
[D] \$1617
19. If $\$ 760$ is invested in an account which earns 9% interest compounded annually, what will be the balance of the account at the end of 20 years? Use the formula $P=A \mathfrak{D}_{r} \mathbf{Q}$ where P is the account balance, A is the amount originally invested, r is the interest rate as a decimal, and t is the time invested in years.
[A] \$285,683,798
[B] \$16,568
[C] \$4259
[D] \$2128
20. If $\$ 1380$ is invested in an account which earns 5% interest compounded annually, what will be the balance of the account at the end of 15 years? Use the formula $P=A \mathbf{D}+\mathbf{Q}$ where P is the account balance, A is the amount originally invested, r is the interest rate as a decimal, and t is the time invested in years.
[A] \$2415
[B] \$2869
[C] \$1382
[D] \$604,294
21. A population of 490 deer return to a forest immediately after a fire. The population increases at an annual rate of 21%. Use the formula $P=A$ @ $r \mathbf{Q}$ where P is the new population, A is the original population, r is the percent written as a decimal and t is the time in years to find the population 5 years after the fire.
22. A population of 240 deer return to a forest immediately after a fire. The population increases at an annual rate of 10%. Use the formula $P=A$ - $r \mathbf{Q}$ where P is the new population, A is the original population, r is the percent written as a decimal and t is the time in years to find the population 5 years after the fire.
23. A population of 230 deer return to a forest immediately after a fire. The population increases at an annual rate of 16%. Use the formula $P=A$. r where P is the new population, A is the original population, r is the percent written as a decimal and t is the time in years to find the population 5 years after the fire.
24. A population of 400 deer return to a forest immediately after a fire. The population increases at an annual rate of 9%. Use the formula $P=A$ - r where P is the new population, A is the original population, r is the percent written as a decimal and t is the time in years to find the population 5 years after the fire.
25. A population of 390 deer return to a forest immediately after a fire. The population increases at an annual rate of 11%. Use the formula $P=A$ - $r \mathbf{Q}$ where P is the new population, A is the original population, r is the percent written as a decimal and t is the time in years to find the population 5 years after the fire.
26. A population of 280 deer return to a forest immediately after a fire. The population increases at an annual rate of 18%. Use the formula $P=A$ - r where P is the new population, A is the original population, r is the percent written as a decimal and t is the time in years to find the population 5 years after the fire.
27. A population of 270 deer return to a forest immediately after a fire. The population increases at an annual rate of 17%. Use the formula $P=A$ - $r \mathbf{Q}$ where P is the new population, A is the original population, r is the percent written as a decimal and t is the time in years to find the population 5 years after the fire.
28. A population of 350 deer return to a forest immediately after a fire. The population increases at an annual rate of 12%. Use the formula $P=A$ © $r \mathbf{Q}$ where P is the new population, A is the original population, r is the percent written as a decimal and t is the time in years to find the population 5 years after the fire.
29. A population of 420 deer return to a forest immediately after a fire. The population increases at an annual rate of 19%. Use the formula $P=A$ © $r \mathbf{Q}$ where P is the new population, A is the original population, r is the percent written as a decimal and t is the time in years to find the population 5 years after the fire.
30. A population of 330 deer return to a forest immediately after a fire. The population increases at an annual rate of 13%. Use the formula $P=A$. $r \mathbf{Q}$ where P is the new population, A is the original population, r is the percent written as a decimal and t is the time in years to find the population 5 years after the fire.
31. A boat that costs $\$ 9300$ decreases in value by 14% per year. How much will the boat be worth after 4 years?
[A] \$5087.18
[B] $\$ 9244.00$
[C] \$6407.33
[D] \$4212.82
32. A boat that costs $\$ 8150$ decreases in value by 13% per year. How much will the boat be worth after 3 years?
[A] \$8111.00
[B] $\$ 5366.80$
[C] \$2783.20
[D] \$3609.61
33. A boat that costs $\$ 5400$ decreases in value by 15% per year. How much will the boat be worth after 6 years?
[A] \$5310.00
[B] $\$ 7090.53$
[C] \$3363.39
[D] \$2036.61
34. A boat that costs $\$ 6600$ decreases in value by 19% per year. How much will the boat be worth after 5 years?
[A] \$9149.93
[B] \$2301.28
[C] \$6505.00
[D] $\$ 4298.72$
35. A boat that costs $\$ 10,800$ decreases in value by 12% per year. How much will the boat be worth after 4 years?
[A] \$6194.01
[B] \$10,752.00
[C] \$6476.71
[D] $\$ 4323.29$
36. A boat that costs $\$ 6200$ decreases in value by 20% per year. How much will the boat be worth after 5 years?
[A] \$6100.00
[B] $\$ 9227.58$
[C] \$4168.38
[D] $\$ 2031.62$
37. A boat that costs $\$ 6500$ decreases in value by 18% per year. How much will the boat be worth after 3 years?
[A] \$3583.89
[B] \$6446.00
[C] \$2916.11
[D] $\$ 4179.71$
38. A boat that costs $\$ 7750$ decreases in value by 11% per year. How much will the boat be worth after 6 years?
[A] \$6745.71
[B] $\$ 7684.00$
[C] \$3851.61
[D] $\$ 3898.39$
39. A boat that costs $\$ 8850$ decreases in value by 16% per year. How much will the boat be worth after 4 years?
[A] \$8786.00
[B] \$4406.16
[C] \$7174.16
[D] $\$ 4443.84$
40. A boat that costs $\$ 5950$ decreases in value by 17% per year. How much will the boat be worth after 6 years?
[A] \$9312.73
[B] \$5848.00
[C] \$1945.30
[D] \$4004.70
41. A certain species of animal is endangered and its numbers are decreasing at an annual rate of 16%. There are currently 400 animals in the population. Which is an exponential function representing the population and the estimated number of animals in 5 years?
[A] $f(x)=400(0.84)^{x} ; 167$
[B] $f(x)=400(1.16)^{x} ; 840$
[C] $f(x)=400(1.16)^{x} ; 2320$
[D] $f(x)=400(0.84)^{x} ; 1680$
42. A certain species of animal is endangered and its numbers are decreasing at an annual rate of 19%. There are currently 200 animals in the population. Which is an exponential function representing the population and the estimated number of animals in 5 years?
[A] $f(x)=200(0.81)^{x} ; 70$
[B] $f(x)=200(0.81)^{x} ; 810$
[C] $f(x)=200(1.19)^{x} ; 1190$
[D] $f(x)=200(1.19)^{x} ; 477$
43. A certain species of animal is endangered and its numbers are decreasing at an annual rate of 20%. There are currently 470 animals in the population. Which is an exponential function representing the population and the estimated number of animals in 5 years?
[A] $f(x)=470(0.8)^{x} ; 1880$
[B] $f(x)=470(1.2)^{x} ; 1170$
[C] $f(x)=470(0.8)^{x} ; 154$
[D] $f(x)=470(1.2)^{x} ; 2820$
44. A certain species of animal is endangered and its numbers are decreasing at an annual rate of 23%. There are currently 210 animals in the population. Which is an exponential function representing the population and the estimated number of animals in 5 years?
[A] $f(x)=210(1.23)^{x} ; 591$
[B] $f(x)=210(0.77)^{x} ; 57$
[C] $f(x)=210(0.77)^{x} ; 809$
[D] $f(x)=210(1.23)^{x} ; 1292$
45. A certain species of animal is endangered and its numbers are decreasing at an annual rate of 21%. There are currently 480 animals in the population. Which is an exponential function representing the population and the estimated number of animals in 5 years?
[A] $f(x)=480(1.21)^{x} ; 2904$
[B] $f(x)=480(0.79)^{x} ; 148$
[C] $f(x)=480(0.79)^{x} ; 1896$
[D] $f(x)=480(1.21)^{x} ; 1245$
46. A certain species of animal is endangered and its numbers are decreasing at an annual rate of 13%. There are currently 260 animals in the population. Which is an exponential function representing the population and the estimated number of animals in 5 years?
[A] $f(x)=260(0.87)^{x} ; 130$
[B] $f(x)=260(1.13)^{x} ; 479$
[C] $f(x)=260(1.13)^{x} ; 1469$
[D] $f(x)=260(0.87)^{x} ; 1131$
47. A certain species of animal is endangered and its numbers are decreasing at an annual rate of 17%. There are currently 310 animals in the population. Which is an exponential function representing the population and the estimated number of animals in 5 years?
[A] $f(x)=310(0.83)^{x} ; 122$
[B] $f(x)=310(1.17)^{x} ; 1814$
[C] $f(x)=310(1.17)^{x} ; 680$
[D] $f(x)=310(0.83)^{x} ; 1287$
48. A certain species of animal is endangered and its numbers are decreasing at an annual rate of 11%. There are currently 300 animals in the population. Which is an exponential function representing the population and the estimated number of animals in 5 years?
[A] $f(x)=300(0.89)^{x} ; 1335$
[B] $f(x)=300(1.11)^{x} ; 506$
[C] $f(x)=300(1.11)^{x} ; 1665$
[D] $f(x)=300(0.89)^{x} ; 168$
49. A certain species of animal is endangered and its numbers are decreasing at an annual rate of 12%. There are currently 420 animals in the population. Which is an exponential function representing the population and the estimated number of animals in 5 years?
[A] $f(x)=420(0.88)^{x} ; 222$
[B] $f(x)=420(1.12)^{x} ; 2352$
[C] $f(x)=420(0.88)^{x} ; 1848$
[D] $f(x)=420(1.12)^{x} ; 740$
50. A certain species of animal is endangered and its numbers are decreasing at an annual rate of 14%. There are currently 330 animals in the population. Which is an exponential function representing the population and the estimated number of animals in 5 years?
[A] $f(x)=330(1.14)^{x} ; 635$
[B] $f(x)=330(1.14)^{x} ; 1881$
[C] $f(x)=330(0.86)^{x} ; 155$
[D] $f(x)=330(0.86)^{x} ; 1419$
